Phosphorylation of SNAP-25 on serine-187 is induced by secretagogues in insulin-secreting cells, but is not correlated with insulin secretion.
نویسندگان
چکیده
The tSNARE (the target-membrane soluble NSF-attachment protein receptor, where NSF is N -ethylmaleimide-sensitive fusion protein) synaptosomal-associated protein of 25 kDa (SNAP-25) is implicated in regulated insulin secretion. In pheochromocytoma PC12 cells, SNAP-25 is phosphorylated at Ser(187), which lies in a region that is important for its function. The aims of the present study were to determine whether SNAP-25 is phosphorylated at Ser(187) in insulin-secreting cells and, if so, whether this is important for regulated insulin secretion. The major findings are: (i) SNAP-25 is rapidly and reversibly phosphorylated on Ser(187) in both rat insulinoma INS-1 cells and rat islets in response to the phorbol ester, PMA; (ii) less than 35% of SNAP-25 in INS-1 cells is phosphorylated in response to PMA, and phosphorylation is limited to plasma-membrane-associated SNAP-25; (iii) both SNAP-25 isoforms (a and b) are phosphorylated, with 1.8-fold greater phosphorylation for SNAP-25b in response to PMA; (iv) in rat islets, Ser(187) phosphorylation is stimulated by glucose or carbachol, albeit to a lesser extent than by PMA, but not by cAMP; (v) insulin secretion from botulinum neurotoxin E-treated hamster insulinoma tumour (HIT) cells, transfected with toxin-resistant Ser(187)-->Ala or Ser(187)-->Asp mutant SNAP-25, was similar to that of wild-type HIT cells. Furthermore, in rat islets no correlation was found between the extent of SNAP-25 phosphorylation at Ser(187) in response to secretagogues and stimulation of insulin release; (vi) use of protein kinase C (PKC) inhibitors suggests that glucose stimulates SNAP-25 phosphorylation via conventional and non-conventional PKC isoforms. In summary, although SNAP-25 phosphorylation at Ser(187) occurs in insulin-secreting cells and is mediated by PKC, it does not appear to play a major role in regulated insulin secretion.
منابع مشابه
تمایز بنیاختههای جنینی انسان به سلولهای مولد انسولین
Introduction: Type I diabetes mellitus is caused by autoimmune destruction of the insulin-producing β-cells. A new potential method for curing the disease is transplantation of differentiated insulin- secreting cells from human embryonic stem cells. Methods: Human embryonic stem cell lines (Royan H1) were used to produce embryoid bodies. Differentiation carried out by growth factor-mediated se...
متن کاملThe role of noggin in regulation of high glucose-induced apoptosis and insulin secretion in INS-1 rat beta cells
Objective(s):The purpose of this study was to investigate the effects of Noggin on high glucose-induced apoptosis and insulin secretion in pancreatic beta cells. Materials and Methods: Different concentrations of glucose were used to examine their effects on INS-1 rat beta cells in vitro. When specific siRNA targeting Noggin and recombinant Noggin were added, apoptosis and insulin secretion wer...
متن کاملبررسی اثر گلوکزآمین بر فعالیت آنزیمهای گلوکوکیناز و هگزوکیناز پانکراس و ارتباط آن با ترشح انسولین از جزایر لانگرهانس موشهای صحرایی سالم و دیابتی نوع 2
Background: Glucokinase serves as a glucose sensor in pancreatic β-cells and plays a key role in glucose homeostasis and glucose-stimulated insulin secretion (GSIS). In the present study we examined the effect of glucosamine, a glucokinase inhibitor, on the pancreatic glucokinase and hexokinase activities and on insulin secretion from freshly rat pancreatic islets of Langerhans. Insulin concen...
متن کاملDifferentiation of Mouse Embryonic Stem Cell into Insulin-Secreting Cell
Purpose: Differentiation of mouse embryonic stem cells into Insulin secreting endocrine cells. Materials and Methods: In this study, Royan B1 mouse embryonic stem cell (derived from C57BL/6 mouse) were used. In directed differentiation method, embryonicstem cells after embryoid bodies formation were differentiated into insulin secreting cells. Nestin positive cells were obtained after culture ...
متن کاملInsulin and secretagogues differentially regulate fluid-phase pinocytosis in insulin-secreting beta-cells.
The physiological role of the beta-cell insulin receptor is unknown. To evaluate a candidate function, the insulin regulation of fluid-phase pinocytosis was investigated in a clonal insulinoma cell line (beta TC6-F7) and, for comparison, also in Chinese hamster ovary cells transfected with the human insulin receptor (CHO-T cells). In CHO-T cells, the net rate of fluid-phase pinocytosis was rapi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 368 Pt 1 شماره
صفحات -
تاریخ انتشار 2002